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Abstract
Inference of genetic admixture, or ancestry, is a fundamental analysis that could
be greatly enhanced if estimates of the ancestral population history were more
readily available. We focus on estimating the ancestral covariance structure,
which reveals the differentiation of these ancestral populations and their pair-
wise relationships. Our previous work revealed a connection between these
admixture parameters and the genetic covariance structure of the admixed in-
dividuals, given by straightforward linear algebra. In this work, we develop an
innovative fast and accurate admixture inference algorithm based on fitting this
linear algebra model. Our approach is made uniquely possible by estimating
the covariance structure with popkin, which we recently developed and results
in practically-unbiased estimates. We compare to several leading approaches,
spanning a variety of likelihood and likelihood-free approaches, but which all
have to estimate an enormous number of allele frequencies. In contrast, our
approach marginalizes loci when estimating the covariance structure, resulting
not only in less (but higher-quality) data to fit but also many fewer parameters
to fit. This property of our model suggests that it may be more robust, since it
has fewer degrees of freedom. Additionally, runtime is practically independent
of the number of loci, so it is much faster than previous approaches when there
are millions of loci. Our constrained non-convex optimization problem is tackled
using a Memetic algorithm, which combines the Genetic algorithm with local
optimization. We also consider estimating the ancestral covariance structure
using the outputs of previous approaches. Our simulations show that our joint
estimation approach results in more accurate estimates of the ancestral covari-
ance matrix than estimates calculated from previous approaches, especially for
larger numbers of ancestral populations. Our simulations also reveal the prob-
lem of non-unique solutions and we discuss our novel approach to regularize
the problem. Lastly, we apply our estimator to several real human datasets
and compare to estimates from leading approaches. In conclusion, we present
a novel approach for estimating admixture that is fundamentally different from
existing approaches, which shows promise in terms of its robustness and speed.

Unbiased kinship estimator: popkin

Genetic model. xij ∈ {0, 1, 2}: genotype of ind. j, biallelic SNP
i, counting ref alelles. pi: ancestral allele frequency. ϕjk: kinship
coefficient. Genotype moments:

E[xij] = 2pi, Cov(xij, xik) = 4pi(1− pi)ϕjk.
popkin is the only practically unbiased estimator for arbitrary pop-
ulation structures [1]. This application uses unsupervised version (no
subpopulation labels):

Ajk = 1
m

m∑
i=1

(xij − 1)(xik − 1)− 1, Âmin = min
jk

Ajk,

ϕ̂new
jk = 1− Ajk

Âmin

a.s.−−−→
m→∞ ϕjk.

Kinship to Coancestry conversion (model assumes no family structure
[1, 2]):

θjk =

2ϕjj − 1 if j = k,

ϕjk if j 6= k.

Admixture: classic and covariance models

Standard admixture model [3] is a Bernoulli mixture model:
E[X/2] = Π = PQᵀ.

Covariance of model (standard linear algebra):
Cov(Π) = Cov(PQᵀ) = Q Cov(P)Qᵀ.

Parametrization from genetic model [4]:
Cov(Π) = V⊗Θ, Cov(P) = V⊗Ψ.

Our final covariance model (V cancels out) [1, 2]:
Θ = QΨQᵀ.

Example simulation, input and output are shown in Fig. 1.
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Figure 1:Simulated data and our model fit. Θ,Ψ,Q are true parameters
of simulation. Θ estimate is obtained by popkin. Ψ,Q estimates are from our
Memetic algorithm infered solely from the Θ estimate from popkin.

Our estimation approach

Objective function:
F =

∣∣∣∣∣∣Θ̂−QΨQᵀ
∣∣∣∣∣∣2 + γ tr(Ψ).

Penalize tr(Ψ) (minimize ancestral FST) to identify solution: Other-
wise Q and Ψ are not uniquely defined, since objective depends on
them solely through their product [5].
Constraints:
• All Q,Ψ elements between 0 and 1.
• Q rows sum to one.
Non-convex problem: Gradient descent was not producing good
solutions: suspected local minima or saddle points. The memetic
algorithm overcomes these problems (Fig. 2).
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Figure 2:Flowchart of proposed Memetic algorithm. Memetic algorithms al-
low for efficient optimization of non-convex problems such as the present problem.
Memetic combines the Genetic algorithm (Recombination, Mutation, and Selection)
with local optimization steps.

Results and Conclusions

We compared various existing approaches in estimating Q and Ψ
(latter from a popkin variant applied to allele frequency estimates P
estimated by these existing approaches), and found our current esti-
mator to be among the best (Fig. 3A-B). Our model quickly averages
over loci with popkin, which reduces the overall runtime on very
large datasets compared to existing approaches (Fig. 3C).
Overall, our new approach to admixture inference is accurate, pro-
vides ancestral population estimation (via Ψ) and scales better for
large datasets.
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Figure 3:Accuracy of Q,P and proposed Ψ estimates. A. Error of Q estimates including
our new proposal, which performs among the best. B. Error of Ψ estimated including our new
proposal, which outperforms estimates from other approaches. C. Runtime of our approach is nearly
independent of the number of loci m, whereas existing approaches run linearly with m. The popkin

runtime is linear with m but negligible in comparison.
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