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Median-differentiation human locus
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Ochoa and Storey (2019a) doi:10.1101/653279
rs17110306; among loci with minor allele frequency > 10%

Basic association tests assume equal allele frequency within cases and controls!

Allele frequency
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https://doi.org/10.1101/083915

Overview of results

Part I:
» Estimating relatedness under both ancestry and family structure
Part II:

» New approach to genetic association: fast and accurate
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New kinship estimator for general relatedness
Kinship model for neutral genotypes x; € {0, 1,2}:

E[x;] = 2pi, Cov(xj, xi) = 4pi (1 — pi) @k

Standard estimator is biased:
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Kinship matrix of world-wide human population
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Standard kinship estimator is severely biased
New Standard
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Kinship driven by admixture in Hispanics
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Unified kinship model' ancestry + family structure!

Pedigree

Popkin estimate True kinship

Standard estimate
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Large family simulation
Mating: proximity preference, but < 2nd-cousin avoidance.
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Large family simulation
Mating: proximity preference, but < 2nd-cousin avoidance.
Small example: 22 individuals, 5 generations:

Actual simulation: 1000 individuals, 20 generations!
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Large family simulation
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Models trait (complicated, unknowns) Models genotype (kinship).

Environment can be absent (Song,
Hao, Storey 2015)

Authors frequently separate ancestry Unified kinship model
(PCs) from family (random effect)

Random effects are slow! Fast!
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LMM: Linear Mixed-effects Model

“Mixed": Fixed and Random effects:

y =« +x; 3 +Fyi+r;

r; ~ MVN (0,020 + o2l) .

» Pros:
» Handles any kinship matrix ¢

» Cons:
» Most computationally intensive
» Environment is unmodeled
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“RGLS": Reverse Generalized Least Squares

Objective function handles kinship structure (no covariates):
0= (/14 By —x)" ot (af1+ By —x).
Effect size estimator (minimizes O) is linear in genotype! (FAST!)

- (e e ey
' (17o-11) (yrd-ly) — (1Td-ly)? '

Variance has closed form, yields accurate p-values!
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Conclusions

New genetic association approach:

» Designed for any form of relatedness
» Works for admixture + family
» Accurate statistics (control false positives)
» Powerful (most true positives, along with LMMs)
» Faster than competitors

Next: real data analysis

» Duke CARRIAGE family data
» dbGaP datasets
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