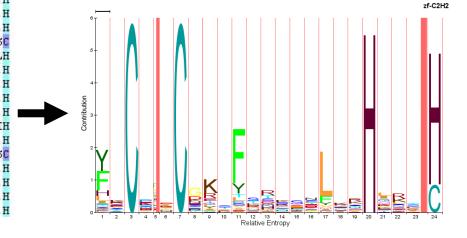

Improving Domain Prediction in *Plasmodium falciparum*

Alejandro Ochoa 2010-10-09

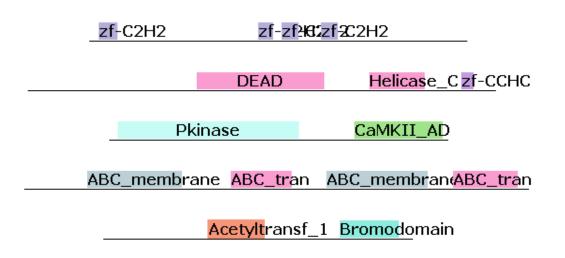
Protein domains

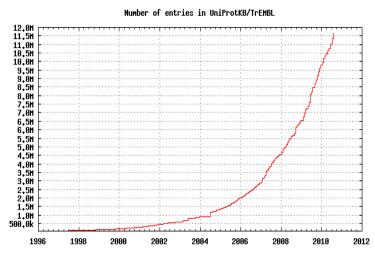
Domain predictions:

F-box


WD4(WD40 WD40

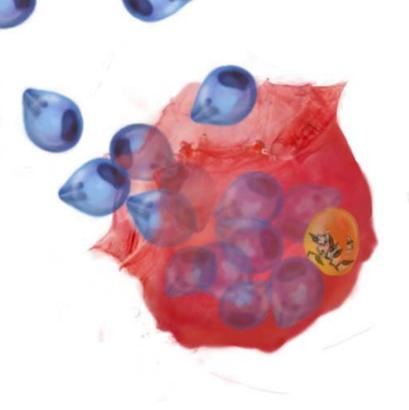
WD40 WD40 WD4

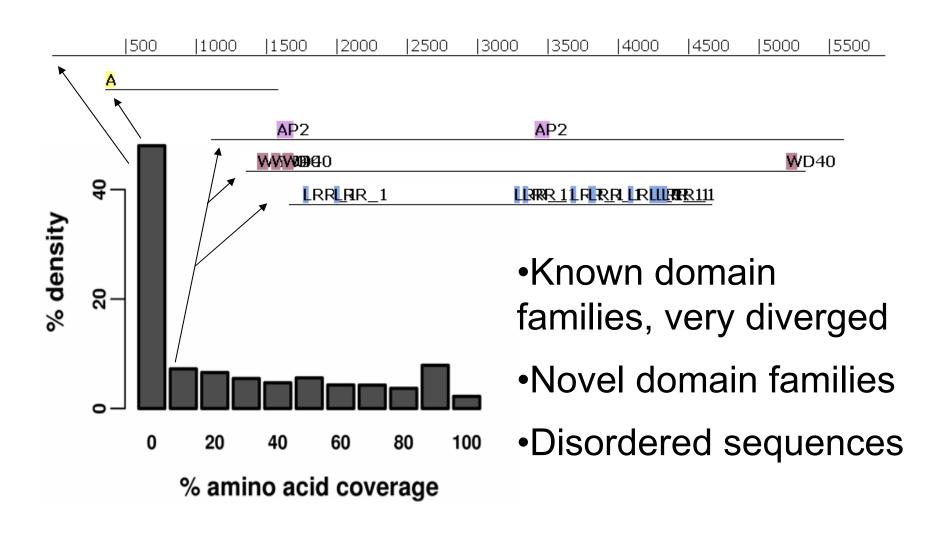

Pfam: a database of protein domain families


```
YACQ...VCH...KSFSRM...SLLNKHSSS..NC
SNAI DROME/362-385
                            YQCK...SCS...RTFSRM...SLLHKHEET..GC
SNAI XENLA/232-255
SNAI MOUSE/236-259
                            YQCQ...ACA...RTFSRM...SLLHKHQES..GC
                            YSCT...SCS...KTFSRM...SLLTKHSEG..GC
ESCA DROME/426-449
                            HVCG...KCY...KTFRRL...MSLKKHLEF..
SUHW DROAN/221-243
                            LHCR...RCR...TQFSRR...SKLHIHQKL..RC
TERM DROME/323-346
                            FMCA...DCG...RCFSVS...SSLKYHQRI..
Z020 XENLA/174-196
EVI1 HUMAN/217-239
                            IKCK...DCG...QMFSTT...SSLNKHRRF...
                            YSCA...DCG...KHFSEK...MYLQFHQKNPSEC
Z02 XENLA/34-59
EVI1 HUMAN/21-44
                            YRCE...DCD...QLFESK...AELADHQKF..PC
                            YKCN...QCG...IIFSQN...SPFIVHQIA...H
ZNF10 HUMAN/517-539
                            YKCE...ECG...KAFKQL...STLTTHKII...C
ZNF91 HUMAN/238-260
                            IKCE...ECG...KAFSTR...STYYRHQKN...H
ZFP58 MOUSE/120-142
TRA1 CAEEL/306-331
                            YKCEF.ADCE...KAFSNA...SDRAKHQNR..TH
                            YTCS...TCG...KTYRQT...STLAMHKRS..AH
ZNF76 HUMAN/345-368
                            YRCS...QCG...KAFRRT...SDLSSHRRT..QC
ZN12 MICSA/106-129
                            YECR...HCG...KKYRWK...STLRRHENV..EC
LOLA1 DROME/794-817
                            YECN...KCG...KFFRYC...FTLNRHQRV...H
ZNF17 HUMAN/435-457
ZG32 XENLA/34-56
                            FVCV...HCG...KGFRDN...YKLSLHLRI...H
                            YVCYF.ADCG...QQFRKH...NQLKIHQYI...H
TF3A BUFAM/104-128
                            YVCT...ECG...TSFRVR...POLRIHLRT...H
ZG46 XENLA/146-168
                            FVCG...DCG...QGFVRS...ARLEEHRRV...H
MZF1 HUMAN/412-434
ZN239 MOUSE/6-28
                            YKCD...KCG...KGFTRS...SSLLVHHSV...H
ZSC22 HUMAN/352-374
                            YKCG...ECG...KTFSRS...THLTQHQRV...H
                            FACD...ICG...RKFARS...DERKRHTKI...H
EGR1 HUMAN/396-418
                            YACK...ICG...KDFTRS...YHLKRHQKYS.SC
SUHW DROAM/349-373
                            YTCP...YCD...KRFTQR...SALTVHTTK..LH
CF2 DROME/485-508
                            YTCS...YCG...KSFTQS...NTLKQHTRI...H
CF2 DROME/401-423
                            YTCE...ICD...GKFSDS...NQLKSHMLV...H
KRUP DROME/306-328
TYY1 HUMAN/383-407
                            YVCPF.DGCN...KKFAQS...TNLKSHILT...H
                            YTCT...QCN...KQFSHS...AQLRAHIST...H
ZG52 XENLA/61-83
                            Y<mark>PCP...FCF...KEFTRK...DNM</mark>TAHVKI..IH
TTKB DROME/538-561
                            YTCPE.PHCG...RGFTSA...TNYKNHWRI...H
ZNF76 HUMAN/285-309
SDC1 CAEEL/145-168
                            YMCQ...VCL...TLFGHT...YNLFMHWRT..SC
SRYC DROME/358-380
                            YQCD...ICG...QKFVQK...INLTHHARI...H
                            YFCH...ICG...TVFIEQ...DNLFKHWRL...H
SDC1 CAEEL/270-292
                            NKCEY.PGCG...KEYSRL...ENLKTHRRT...H
TRA1 CAEEL/276-300
                            CKCN...LCG...KAFSRP...WLLQGHIRT...H
ESCA DROME/370-392
```

- 11,912 curated families!
- Profile Hidden Markov Models (HMMs): probabilistic models of sequence families

Why predict domains?




- For new sequences, before experiments start...
- Domains may imply functions
- Experimental alternatives are infeasible as protein databases increase exponentially

Plasmodium falciparum

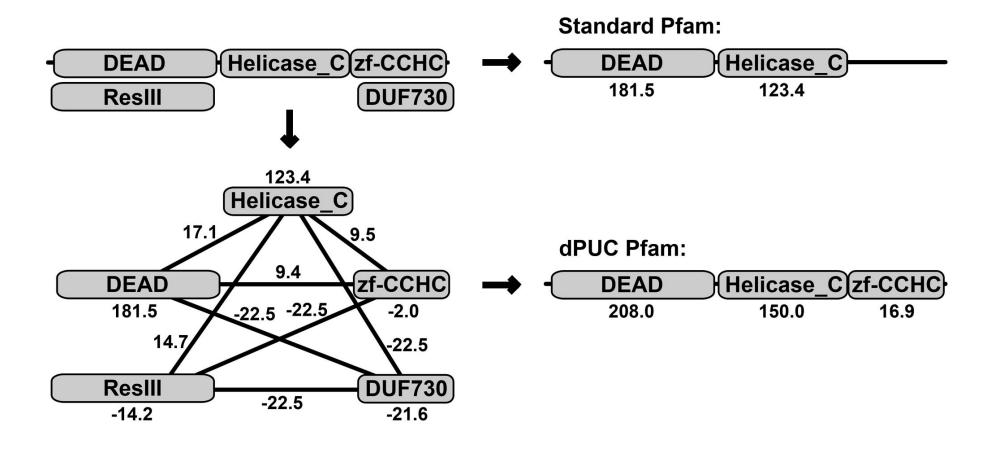
- Malaria
- Diverged eukaryote
 - 80% AT-bias
 - Low-complexity regions
 - Non-photosynthetic plastid
- Annotation
 - 5.5K proteins
 - 45% unknown function
 - 20% unknown in yeast
 - 88% of annotations are bioinformatical

Poor domain coverage of Plasmodium falciparum

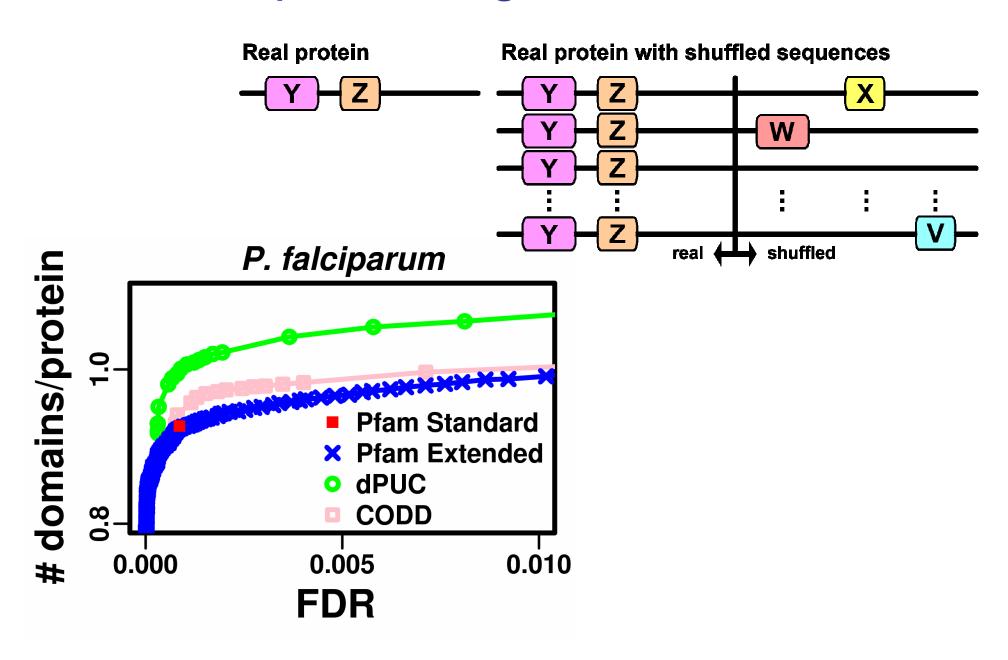
Domain Prediction Using Context: dPUC

DEAD Helicase_C zf-CCHC

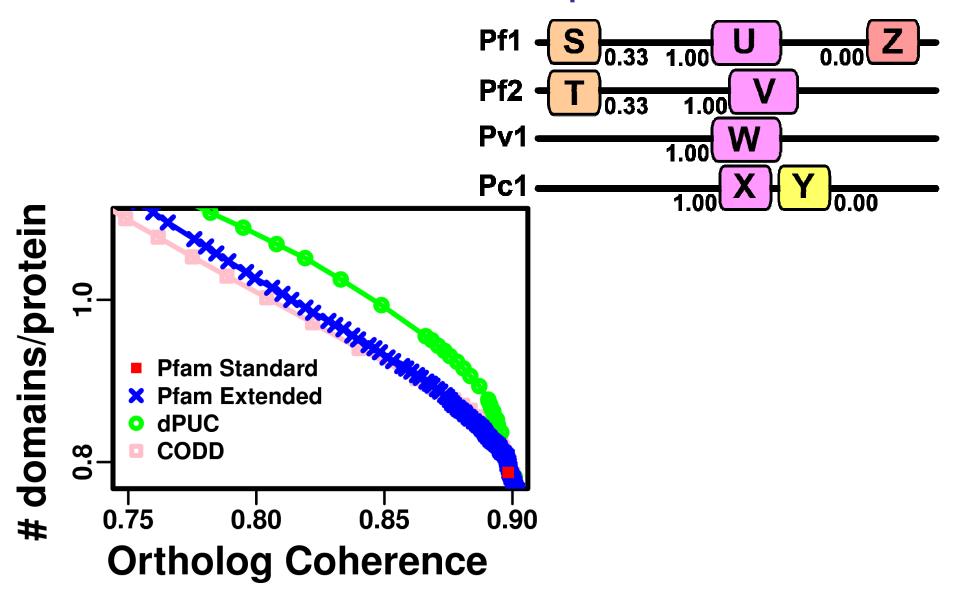
RNA_pol_Rpb2RN/RNtRIRNA_pol_Rpb2_6RNA_pol_Rpb2_7

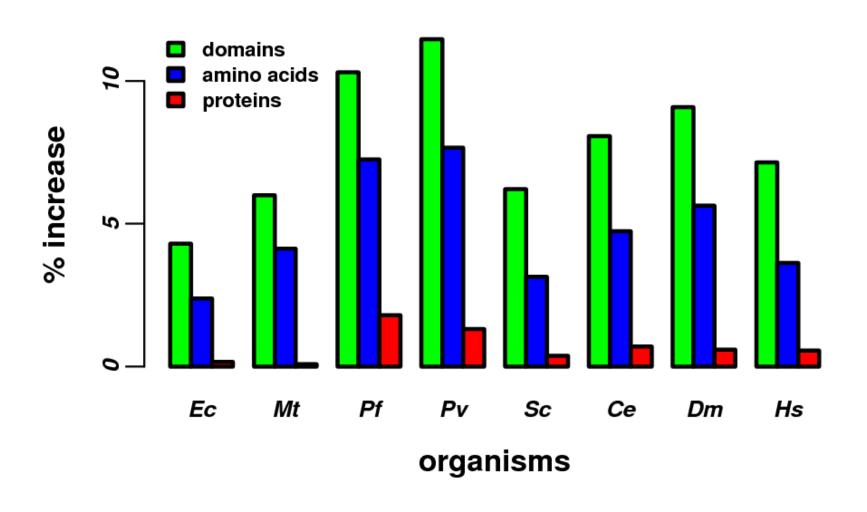

Background

- Domains co-occur in limited combinations
- Domains are scored independently of each other


Idea

- Score domains in combination
- Context + Sequence evidence


The dPUC method


Improved signal to noise

Improved ortholog coherence on *Plasmodium* species

dPUC increases coverage

New predictions

- Phosphatase -> RNA lariat debranching enzyme
- P. falciparum

Standard Pfam dPUC Pfam

<u>Metallophos</u>

Metallophos

DBR1

S. cerevisiae

Standard Pfam dPUC Pfam

MetallophosDBR1

MetallophosDBR1

New predictions

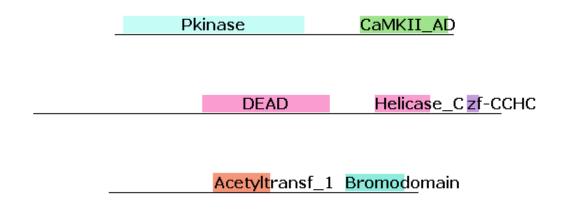
- MIF4G domain-containing protein ->
 Poly-A binding protein-interacting protein 1
- P. falciparum

Length (aa) Standard Pfam dPUC Pfam

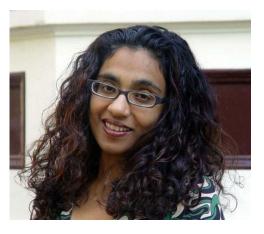
_ 350	400	450	 50	2700	2750	2800	2850	2900	2950
			MIF4G						
F			M	IIF4G					

H. sapiens

Length (aa) Standard Pfam dPUC Pfam


<u> </u> 50	100	150	[200	[250	[300	350	[400	[450
	PA	M2		MIF4G				
	PA	M2		MIF4G				

New predictions


RNA helicase -> Post-translational mRNA regulation

Description Organism	RNA helicase-1 <i>P. falciparum</i>							
Standard Pfam		DEAD	Helicase_C					
dPUC Pfam		DEAD	Helicase_C zf-CCHC					
Description Organism	DDX41_DROME ATP-dependent RNA helicase abstrakt D. melanogaster							
Standard Pfam		DEAD	Helicase_C					
dPUC Pfam		DEAD	Helicase_C zf-CCHC					
Description Organism	DDX41_HUMAN Probable ATP-dependent RNA helicase DD H. sapiens							
Standard Pfam		DEAD	Helicase_C zf-CCHC					
dPUC Pfam		DEAD	Helicase_Czf-CCHC					

Domain context

- Complements sequence evidence
- Improves domain predictions
- Works best on Plasmodium

Mona Singh & Lab

- Jesse Farnham
- Dario Ghersi
- Peng Jiang
- Zia Khan
- Anton Persikov
- Jimin Song
- Tao Yue

Thesis Committee

- Leonid Krugliak
- Saeed Tavazoie

dpuc.princeton.edu

Manuel Llinás & Lab

- Lindsey Altenhofen
- Tracey Campbell
- Erandi De Silva
- Björn Kafsack
- Ian Lewis
- Yael Marshall
- Jessica O'Hara
- Kellen Olszewski
- Heather Painter
- Yoanna Pumpalova

NSF GRFP